41 research outputs found

    Correlations between Ultrahigh Energy Cosmic Rays and Infrared-Luminous Galaxies

    Full text link
    We confirm the UHECR horizon established by the Pierre Auger Observatory using the heterogeneous Veron-Cetty Veron (VCV) catalog of AGNs, by performing a redshift-angle-IR luminosity scan using PSCz galaxies having infrared luminosity greater than 10^{10}L_sun. The strongest correlation -- for z < 0.016, psi = 2.1 deg, and L_ir > 10^{10.5}L_sun -- arises in fewer than 0.3% of scans with isotropic source directions. When we apply a penalty for using the UHECR energy threshold that was tuned to maximize the correlation with VCV, the significance degrades to 1.1%. Since the PSCz catalog is complete and volume-limited for these parameters, this suggests that the UHECR horizon discovered by the Pierre Auger Observatory is not an artifact of the incompleteness and other idiosyncrasies of the VCV catalog. The strength of the correlation between UHECRs and the nearby highest-IR-luminosity PSCz galaxies is stronger than in about 90% percent of trials with scrambled luminosity assignments for the PSCz galaxies. If confirmed by future data, this result would indicate that the sources of UHECRs are more strongly associated with luminous IR galaxies than with ordinary, lower IR luminosity galaxies.Comment: 4 pages, 3 figures. Replaced with accepted versio

    S7 : Probing the physics of Seyfert Galaxies through their ENLR & HII Regions

    Full text link
    Here we present the first results from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) which aims to investigate the physics of ~140 radio-detected southern active Galaxies with z<0.02 through Integral Field Spectroscopy using the Wide Field Spectrograph (WiFeS). This instrument provides data cubes of the central 38 x 25 arc sec. of the target galaxies in the waveband 340-710nm with the unusually high resolution of R=7000 in the red (530-710nm), and R=3000 in the blue (340-560nm). These data provide the morphology, kinematics and the excitation structure of the extended narrow-line region, probe relationships with the black hole characteristics and the host galaxy, measures host galaxy abundance gradients and the determination of nuclear abundances from the HII regions. From photoionisation modelling, we may determine the shape of the ionising spectrum of the AGN, discover whether AGN metallicities differ from nuclear abundances determined from HII regions, and probe grain destruction in the vicinity of the AGN. Here we present some preliminary results and modelling of both Seyfert galaxies observed as part of the survey.Comment: 6 pages, 2 figures, Invited Talk at the IAU symposium 30

    Probing the Physics of Narrow Line Regions in Active Galaxies II: The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    Get PDF
    Here we describe the \emph{Siding Spring Southern Seyfert Spectroscopic Snapshot Survey} (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph (WiFeS) mounted on the ANU 2.3m telescope located at the Siding Spring Observatory to deliver an integral field of 38×2538\times25~ arcsec at a spectral resolution of R=7000R=7000 in the red (530−710530-710nm), and R=3000R=3000 in the blue (340−560340-560nm). {From these data cubes we have extracted the Narrow Line Region (NLR) spectra from a 4 arc sec aperture centred on the nucleus. We also determine the Hβ\beta and [OIII]~λ\lambda5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ\beta and \lOIII\ luminosities {determined from spectra for which the stellar continuum has been removed.} We present a set of images of the galaxies in [OIII]~λ\lambda5007, [NII]~λ\lambda6584 and Hα\alpha which serve to delineate the spatial extent of the extended narrow line region (ENLR) and {\bf also to} reveal the structure and morphology of the surrounding \HII\ regions. Finally, we provide a preliminary discussion of those Seyfert~1 and Seyfert~2 galaxies which display coronal emission lines in order to explore the origin of these lines.Comment: Accepted for publication 9 Jan 2015, Astrophysical Journal Supplements. 49pages, 8 figure

    Probing the Physics of Narrow Line Regions in Active Galaxies III: Accretion and Cocoon Shocks in the LINER NGC1052

    Full text link
    We present Wide Field Spectrograph (WiFeS) integral field spectroscopy and HST FOS spectroscopy for the LINER galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionisation cone along the minor axis of the galaxy. Part of this outflow region is photoionised by the AGN, and shares properties with the ENLR of Seyfert galaxies, but the inner (R≲1.0R \lesssim 1.0~arcsec) accretion disk and the region around the radio jet appear shock excited. The emission line properties can be modelled by a "double shock" model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (∼104\sim10^4 and ∼106\sim10^6 cm−3^{-3}), and provides a good fit to the observed emission line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission line model is remarkably robust against variation of input parameters, and so offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).Comment: Accepted for publication in Astrophysical Journal. 16 pages, 12 figure

    Dissecting Galaxies: Separating Star Formation, Shock Excitation and AGN Activity in the Central Region of NGC 613

    Get PDF
    The most rapidly evolving regions of galaxies often display complex optical spectra with emission lines excited by massive stars, shocks and accretion onto supermassive black holes. Standard calibrations (such as for the star formation rate) cannot be applied to such mixed spectra. In this paper we isolate the contributions of star formation, shock excitation and active galactic nucleus (AGN) activity to the emission line luminosities of individual spatially resolved regions across the central 3 ×\times 3 kpc2^2 region of the active barred spiral galaxy NGC∼\sim613. The star formation rate and AGN luminosity calculated from the decomposed emission line maps are in close agreement with independent estimates from data at other wavelengths. The star formation component traces the B-band stellar continuum emission, and the AGN component forms an ionization cone which is aligned with the nuclear radio jet. The optical line emission associated with shock excitation is cospatial with strong H2H_2 and [Fe II] emission and with regions of high ionized gas velocity dispersion (σ>100\sigma > 100 km s−1^{-1}). The shock component also traces the outer boundary of the AGN ionization cone and may therefore be produced by outflowing material interacting with the surrounding interstellar medium. Our decomposition method makes it possible to determine the properties of star formation, shock excitation and AGN activity from optical spectra, without contamination from other ionization mechanisms.Comment: 16 pages, 12 figures. Accepted for publication in MNRA
    corecore